819

A NEW ANTIBIOTIC, OKICENONE

II. PHYSICO-CHEMICAL PROPERTIES AND STRUCTURE ELUCIDATION

Shinji Funayama[†], Masami Ishibashi^{††}, Kanki Komiyama and Satoshi Ōmura*

The Kitasato Institute, and School of Pharmaceutical Sciences of Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan

(Received for publication March 1, 1991)

The structure of a new cytocidal antibiotic, okicenone was elucidated to be 3,4-dihydro-4,6,9-trihydroxy-8-methyl-1(2H)-anthracenone on the basis of spectroscopic methods.

In the course of a screening program for novel antibiotics showing cytocidal activity, okicenone (1) was isolated from the culture broth of *Streptomyces* sp. KO-3599 which had been isolated from a soil sample collected in Okinawa Prefecture, Japan. The isolation procedure and physico-chemical properties of the new antibiotic together with the taxonomic studies of the producing strain were reported in the preceding paper¹). This paper deals with the structure elucidation of okicenone (1).

Materials and Methods

General Experimental Procedures

MP's were determined using a Yanagimoto MP-3 hot stage microscope and are uncorrected. UV spectra were recorded on a Shimadzu model UV-200S spectrophotometer. IR spectra were recorded on a Jasco model A-102 interferometer. MS were obtained with a Jeol model DX-300 mass spectrometer. ¹H and ¹³C NMR spectra were recorded on a Varian XL-400 instrument. Kieselgel 60 (Merck), Diaion HP-20 (Mitsubishi Chemical Industries) and Sephadex LH-20 (Pharmacia Fine Chemicals) were used for column chromatography and DC-Fertigplatten Kieselgel 60 (Merck) was used for TLC analysis and for preparative TLC.

Results and Discussion

Structure of Okicenone

Physico-chemical properties of okicenone (1) are summarized in Table 1. The UV and IR absorption spectra of 1 are shown in Figs. 1 and 2, respectively. The antibiotic is soluble in CHCl₃, EtOAc and MeOH but practically insoluble in H_2O . Okicenone gave a positive color reaction with iodine, 50% sulfuric acid and FeCl₃ and was negative to DRAGENDORFF's reagent and ninhydrin. The mo-

	R ₁	R ₂	R ₃	R ₄
1	H	OH	OH	CH ₃
2	OH	Н	OH	CH_3
3	Н	OH	CH3	OH
4	OH	Η	CH_3	OH

[†] Present address: Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan.

^{††} Present address: Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan.

THE JOURNAL OF ANTIBIOTICS

Appearance	Pale yellow needles	IR $v_{\rm max}$ cm ⁻¹	Fig. 2					
MP	$209 \sim 210^{\circ} C$	EI-MS (m/z)	258 (M ⁺), 240, 202, 201					
Optical rotation		HREI-MS (m/z)						
$[\alpha]_{D}^{18}$	$+20^{\circ}$ (c 0.1, acetone)	Obsd	258.0879					
TLC (silica gel)		Calcd for C ₁₅ H ₁₄ O ₄	258.0892					
CHCl ₃ - CH ₃ OH (15:1)	0.29	Color reaction						
$CHCl_3 - CH_3OH(9:1)$	0.65	Positive	50% $H_2SO_4 + \Delta$, iodine,					
Hexane - acetone (1:1)	0.42		FeCl ₃					
Molecular formula	$C_{15}H_{14}O_{4}$	Negative	Ninhydrin reagent,					
MW	258		DRAGENDORFF's reagent					
UV λ_{max} nm	Fig.1							

Table 1. Physico-chemical properties of okicenone (1).

Fig. 2. IR spectrum of okicenone (1).

lecular formula of 1 was determined to be $C_{15}H_{14}O_4$ by HREI-MS (*m/z* 258.0879, $\Delta - 1.3$ mmu). The UV spectrum (Fig. 1) showed absorption maxima at 223, 271 and 375 nm. These absorptions appeared similar to those of the aureolic acid group such as chromomycins²⁾, and indicative of an anthracenone moiety contained in the molecule of okicenone (1).

Table 2.	¹ H and	¹³ C NMR	chemical	shifts	of	okicenone	(1) in	CD ₃ OD	and	protons	to	which	an	NOE	was
obser	ved.														

Position	Position ¹³ C ¹ H		NC	ЭE	Position	¹³ C	¹ H	NOE		
1	205.3 s				7	121.5 d	6.77 dq	8-CH ₃	(2%)	
2	35.7 t	(ax) 2.66 ddd			8	143.1 s				
		(eq) 2.91 ddd			8-CH ₃	25.4 q	2.84 d	7-H	(14%)	
3	32.5 t	(ax) 2.10 dddd			8a -	119.0 s				
		(eq) 2.25 dddd			9	168.2 s				
4	68.9 d	4.83 ddd	10-H	(6%)	9a	109.8 s				
4a	141.7 s				10	117.0 d	7.10 d	5-H	(13%)	
5	109.7 d	6.84 d	10-H	(10%)	10a	143.8 s				
6	160.7 s									

 $J (H,H) \text{ in } Hz: 2_{ax}, 2_{eq} = 18; 2_{ax}, 3_{ax} = 8; 2_{ax}, 3_{eq} = 5; 2_{eq}, 3_{ax} = 5; 2_{eq}, 3_{eq} = 8; 3_{ax}, 3_{eq} = 13; 3_{ax}, 4 = 8; 3_{eq}, 4 = 3.5; 4, 10 = 1; 5, 7 = 2.5; 7, 8 - CH_3 = 1.$

Fig. 3. ¹H NMR spectrum of okicenone (1).

¹H and ¹³C NMR spectra of 1 (Table 2, Figs. 3 and 4) along with DEPT experiments revealed the presence of one carbonyl, three sp^2 methines, seven sp^2 quarternary carbons, one sp^3 oxymethine, two sp^3 methylenes and one methyl group. This accounts for 15 carbons and 11 protons. The presence of three hydroxyl groups was inferred from the molecular formula $C_{15}H_{14}O_4$. The ¹H-¹H COSY spectrum indicated a proton network: X–CH₂–CH₂–CH(OH)–X. Since consideration of the unsaturation number implied that three rings were contained in the molecule of 1, all the observations described above indicated a 3,4-dihydro-1(2*H*)-anthracenone nucleus with one methyl and two hydroxyl groups on the aromatic rings and a hydroxyl group on the C-2 or C-4 position. To determine the location of the hydroxyl and methyl groups, NOE experiments were carried out as follows (Fig. 5).

Upon irradiation of the sp^3 oxymethine proton at δ 4.83, a significant NOE (6%) was observed with the aromatic proton at δ 7.10, indicating the hydroxyl group at C-4 and the δ 7.10 proton at 10-H. Irradiation of the 10-H signal (δ 7.10) resulted in a 13% NOE in the aromatic proton at δ 6.84, which

was threfore assigned to 5-H. Converse irradiation of 5-H yielded a 10% NOE in the 10-H signal. Since the 5-H signal appeared as a doublet with a typical *J*-value (2.5 Hz) for *meta*-coupling, the third aromatic proton (δ 6.77) was assigned to 7-H; accordingly two hydroxyl and one methyl substituents had to be placed at the remaining C-6, C-8 and C-9 positions.

Irradiation of the methyl protons (δ 2.84) caused a strong NOE (14%) in the 7-H signal (δ 6.77) but an NOE was not observed in the 5-H signal

(δ 6.84). This observation clearly showed that the methyl group was on C-8 and the hydroxyl group on C-6. The remaining hydroxyl group was therefore deduced to be on C-9. Additional proof for these results was provided by the study on the ¹H-¹³C long-range couplings through long range selective proton decoupling experiments to show the following connectivities: 4-H/C-4a, 4-H/C-10, 10-H/C-10a, 10-H/C-5, 5-H/C-10, 5-H/C-6, 7-H/C-6, 7-H/C-8, 8-CH₃/C-7 and 8-CH₃/C-8. Thus the structure of okicenone was concluded to be 3,4-dihydro-4,6,9-trihydroxy-8-methyl-1(2*H*)-anthracenone (1).

For those bearing structural similarity to okicenone (1), aloesaponols II (2)³, III (3)⁴ and germichrysone (4)^{5~7} have been reported having the same molecular formula and very similar chemical properties.

Acknowledgment

This work was supported in part by Grants-in-Aid from the Ministry of Health and Welfare, the Ministry of

Education, Science and Culture, Japan, and by funds from Japan Keirin Association.

References

- KOMIYAMA, K.; S. FUNAYAMA, Y. ANRAKU, M. ISHIBASHI, Y. TAKAHASHI, T. KAWAKAMI & S. OMURA: A new antibiotic, okicenone. I. Taxonomy, fermentation, isolation and biological characteristics. J. Antibiotics 44: 814~818 1991
- 2) UMEZAWA, H., (Ed.): "Index of Antibiotics from Actinomycetes", p. 215, Japan Antibiotics Res. Assoc., Tokyo, 1967
- YAGI, A.; K. MAKINO & I. NISHIOKA: Studies on the constituents of *Aloe saponaria* HAW. I. The structures of tetrahydroanthracene derivatives and the related anthraquinones. Chem. Pharm. Bull. 22: 1159~1166, 1974
- 4) YAGI, A.; K. MAKINO & I. NISHIOKA: Studies on the constituents of *Aloe saponaria* HAW. II. The structures of tetrahydroanthracene derivatives, aloesaponol III and -IV. Chem. Pharm. Bull. 25: 1764~1770, 1977
- TAKAHASHI, S.; M. TAKIDO, U. SANKAWA & S. SHIBATA: Germichrysone, a hydroanthracene derivative from seedlings of *Cassia torosa*. Phytochemistry 15: 1295~1296, 1976
- 6) KO, K. S.; Y. EBIZUKA, H. NOGUCHI & U. SANKAWA: Production of secondary metabolites by hairy roots and regenerated plants transformed with Ri plasmids. Chem. Pharm. Bull. 36: 4217~4220, 1988
- 7) TAKITO, M. & S. KITANAKA (Taisho Pharm.): Extraction of tetrahydroanthracene derivatives as anticancer agents and pharmaceutical formulations containing them. Jpn. Pat. 207213 ('87), Sept. 11, 1987 [CA 110: 82476m, 1989]